
Package: xwf (via r-universe)
August 24, 2024

Version 0.2-3

Date 2020-02-19

Title Extrema-Weighted Feature Extraction

Author Willem van den Boom [aut, cre]

Maintainer Willem van den Boom <willem@wvdboom.nl>

Description Extrema-weighted feature extraction for varying length
functional data. Functional data analysis method that performs
dimensionality reduction based on predefined features and
allows for quantile weighting. Method implemented as presented
in van den Boom et al. (2018)
<doi:10.1093/bioinformatics/bty120>.

License MIT + file LICENSE

Imports mgcv

RoxygenNote 6.0.1

NeedsCompilation no

Date/Publication 2020-02-20 07:00:02 UTC

Repository https://willemvandenboom.r-universe.dev

RemoteUrl https://github.com/cran/xwf

RemoteRef HEAD

RemoteSha 58d5e8700523ee7792a9aad3399ac3790e09d45e

Contents
default_psi . 2
xwf . 2
xwfGAM . 3
xwfGridsearch . 4
XWFpValues . 6

Index 9

1

https://doi.org/10.1093/bioinformatics/bty120

2 xwf

default_psi Default psi list

Description

List with the same local feature functions psi as in the original paper

Usage

default_psi()

Value

List with 4 different local features psi

Examples

default_psi()

xwf Compute XWFs

Description

Compute extrema-weighted features based on functions, predefined local features, and weighting
functions

Usage

xwf(xx, t, n.i, psi, w = function(t, i) ifelse(left, min(1, (1 -
F(xx[[i]](t)))/(1 - b)), min(1, F(xx[[i]](t))/b)), b = 0.5, F = NULL,
t.min = NULL, t.max = NULL, t.range = NULL, rel.shift = 0.001,
left = TRUE)

Arguments

xx List of function for which to compute the XWFs

t Matrix containing the times at which the functions xx were measured: Element
(i,j) contains the time of the j-th measurement of the i-th function.

n.i Vector containing the number of measurements for each function. The first n.i[i]
elements of the i-th row of t should not be NA.

psi Predefined local feature which is a function of a function (first argument) and a
measurement time (second argument)

w Weighting function. The default is the one used in the original paper.

xwfGAM 3

b Parameter of the weighting function. See original paper for details. Ignored if
weighting function w is not the default.

F CDF of the values of the functions xx. Ignored if weighting function w is not
the default.

t.min Vector with time of first measurement for each function. Computed from t if
omitted but providing it saves computational cost.

t.max Analogous to t.min but now the time of the last measurement.

t.range Vector with differences between t.max and t.min. Can be supplied to avoid
recomputation.

rel.shift Optional relative reduction of the integration range to avoid instabilities at the
end of the integration ranges. Set to 0 if no such correction is desired.

left Boolean specifying whether the left (TRUE) or right (FALSE) extrema-weighted
features should be computed: Left and right refer to the weighting function. Ig-
nored if weighting function w is not the default.

Value

Vector containing the extrema-weighted features obtained by numerical integration for each of the
functions.

Examples

xwf(
xx = list(function(t) t),
t = (1:10)/10,
n.i = 10,
psi = function(x, t) x(t),
b = .2,
F = function(x) x
)

xwfGAM Evaluate the GAM

Description

Evaluate the generalized additive model for a set of computed extrema-weighted features

Usage

xwfGAM(wL, wR, y, z = NULL)

4 xwfGridsearch

Arguments

wL Matrix with left extrema-weighted features

wR Matrix with right extrema-weighted features

y Binary vector with outcomes

z Optional matrix z with extra, linear predictors

Examples

xwf:::xwfGAM(wL = rep(1:45, 10), wR = rep(1:90, 5), y = c(rep(0:1, 225)))

xwfGridsearch Adaptive grid search

Description

Adaptive grid search to optimize the weighting functions in the extrema-weighted features.

Usage

xwfGridsearch(y, xx, t, n.i, psi.list = default_psi(), F = NULL, z = NULL,
iter = 3, w = function(t, i, b, left) ifelse(left, min(1, (1 -
F(xx[[i]](t)))/(1 - b)), min(1, F(xx[[i]](t))/b)), rel.shift = 0.001,
progressbar = TRUE)

Arguments

y Vector with binary outcomes data

xx List of functions for which to compute the XWFs

t Matrix containing the times at which the functions xx were measured: Element
(i,j) contains the time of the j-th measurement of the i-th function.

n.i Vector containing the number of measurements for each function. The first n.i[i]
elements of the i-th row of t should not be NA.

psi.list List of predefined local features which are functions of a function (first argu-
ment) and a measurement time (second argument)

F CDF of the values of the functions xx. Ignored if weighting function w is not
the default.

z Optional matrix with covariates to be included as linear predictors in the gener-
alized additive model

iter Number of levels in the adaptive grid search. The resolution in b obtained is
2^-1-iter.

w Weighting function. The default is the one used in the original paper. See the
default for what the roles of its 3 arguments are.

xwfGridsearch 5

rel.shift Optional relative reduction of the integration range to avoid instabilities at the
end of the integration ranges. Set to 0 if no such correction is desired.

progressbar Boolean specifying whether a progress bar indicating what level of the adaptive
grid has been completed should be displayed.

Value

List containing the final XWFs (wL and wR), the parameters for the optimal weighting functions
(b.left and b.right), and the gmcv::gamObject corresponding to the final optimal generalized additive
model fit.

Examples

Data simulation similar to Section 3.2 of the paper

Sample size
n <- 100

Length of trajectories
n.i <- rep(5, n)
max.n.i <- max(n.i)

Times
t <- matrix(NA_integer_, nrow = n, ncol = max.n.i)
for(i in 1:n) t[i, 1:n.i[i]] <- 1:n.i[i]

Sample periods
phi <- runif(n = n, min = 1, max = 10)

Sample offsets
m <- 10*runif(n = n)

Blood pressure measurements
x <- t
for(i in 1:n) x[i, 1:n.i[i]] <- sin(phi[i] * 2*pi/max.n.i * t[i, 1:n.i[i]]) + m[i]

Matrix with covariates z
q <- 2 # Number of covariates
z <- matrix(rnorm(n = n*q), nrow = n, ncol = q)

Generate outcomes
temp <- phi*min(m, 7)
temp <- 40*temp
prob <- 1/(1+exp(2*(median(temp)-temp)))
y <- rbinom(n = n, size = 1, prob = prob)

xx <- list()
for(i in 1:n) xx[[i]] <- approxfun(x = t[i,1:n.i[i]], y = x[i,1:n.i[i]], rule = 2)

Estimate f
weights <- matrix(1/n.i, ncol = max.n.i, nrow = n)[!is.na(t)]

6 XWFpValues

f <- density(
x = t(sapply(X = 1:n, FUN = function(i) c(xx[[i]](t[i,1:n.i[i]]), rep(NA, max.n.i-n.i[i])))),
weights = weights/sum(weights),
na.rm = T
)

Define CDF of f, F
CDF <- c(0)
for(i in 2:length(f$x)) CDF[i] <- CDF[i-1]+(f$x[i]-f$x[i-1])*(f$y[i]+f$y[i-1])/2
F <- approxfun(x = f$x, y = CDF/max(CDF), yleft = 0, yright = 1)

psi <- list(
function(x, t) abs(x(t)-x(t-1))

)

XWFresult <- xwfGridsearch(y = y, xx = xx, t = t, n.i = n.i, psi.list = psi, F = F, z = z)

summary(XWFresult$GAMobject)
XWFresult$b.left
XWFresult$b.right

XWFpValues p-value computation for XWFs

Description

Randomization method to compute p-values for an optimized extrema-weighted features general-
ized additive model fit.

Usage

XWFpValues(GAMobject, xx, t, n.i, psi.list = NULL, F, z = NULL,
w = function(t, i, b, left) ifelse(left, min(1, (1 - F(xx[[i]](t)))/(1 -
b)), min(1, F(xx[[i]](t))/b)), n.boot = 100, progressbar = TRUE)

Arguments

GAMobject The GAMobject returned by xwfGridsearch

xx List of function for which to compute the XWFs

t Matrix containing the times at which the functions xx were measured: Element
(i,j) contains the time of the j-th measurement of the i-th function.

n.i Vector containing the number of measurements for each function. The first n.i[i]
elements of the i-th row of t should not be NA.

psi.list List of predefined local features which are functions of a function (first argu-
ment) and a measurement time (second argument)

XWFpValues 7

F CDF of the values of the functions xx. Ignored if weighting function w is not
the default.

z Optional matrix with covariates to be included as linear predictors in the gener-
alized additive model

w Weighting function. The default is the one used in the original paper. See the
default for what the roles of its 3 arguments are.

n.boot Number for randomizations used to obtain the p-values. The resolution of the
p-values is 1/n.boot

progressbar Boolean specifying whether a progress bar indicating which randomizations
have been completed should be displayed.

Value

Named vector with p-values

Examples

Data simulation similar to Section 3.2 of the paper

Sample size
n <- 100

Length of trajectories
n.i <- rep(5, n)
max.n.i <- max(n.i)

Times
t <- matrix(NA_integer_, nrow = n, ncol = max.n.i)
for(i in 1:n) t[i, 1:n.i[i]] <- 1:n.i[i]

Sample periods
phi <- runif(n = n, min = 1, max = 10)

Sample offsets
m <- 10*runif(n = n)

Blood pressure measurements
x <- t
for(i in 1:n) x[i, 1:n.i[i]] <- sin(phi[i] * 2*pi/max.n.i * t[i, 1:n.i[i]]) + m[i]

Matrix with covariates z
q <- 2 # Number of covariates
z <- matrix(rnorm(n = n*q), nrow = n, ncol = q)

Generate outcomes
temp <- phi*min(m, 7)
temp <- 40*temp
prob <- 1/(1+exp(2*(median(temp)-temp)))
y <- rbinom(n = n, size = 1, prob = prob)

8 XWFpValues

xx <- list()
for(i in 1:n) xx[[i]] <- approxfun(x = t[i,1:n.i[i]], y = x[i,1:n.i[i]], rule = 2)

Estimate f
weights <- matrix(1/n.i, ncol = max.n.i, nrow = n)[!is.na(t)]
f <- density(
x = t(sapply(X = 1:n, FUN = function(i) c(xx[[i]](t[i,1:n.i[i]]), rep(NA, max.n.i-n.i[i])))),
weights = weights/sum(weights),
na.rm = T
)

Define CDF of f, F
CDF <- c(0)
for(i in 2:length(f$x)) CDF[i] <- CDF[i-1]+(f$x[i]-f$x[i-1])*(f$y[i]+f$y[i-1])/2
F <- approxfun(x = f$x, y = CDF/max(CDF), yleft = 0, yright = 1)

psi <- list(
function(x, t) abs(x(t)-x(t-1))

)

XWFresult <- xwfGridsearch(y = y, xx = xx, t = t, n.i = n.i, psi.list = psi, F = F, z = z)

XWFpValues(
GAMobject = XWFresult$GAMobject,
xx = xx,
t = t,
n.i = n.i,
psi.list = psi,
F = F,
z = z,
n.boot = 3
)

Index

default_psi, 2

xwf, 2
xwfGAM, 3
xwfGridsearch, 4, 6
XWFpValues, 6

9

	default_psi
	xwf
	xwfGAM
	xwfGridsearch
	XWFpValues
	Index

